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The 8080 system selects an input-output device as follows:

1  The device number of the selected device is placed on address lines
A7 to AO'

2 If the device is to be read from by the 8080 bus, I/O R (which is normally
1) is made a 0. While I/O R is a 0, the selected device to be read from places its
data on D, to Dy. When I/O R goes back to its normal 1 state, the selected device
removes the data from lines D, to D,."?

If the 8080'* wishes to output data to a device, it places the device’s number
on A, to Ag. Then it places the data to be output on D, to D, and makes I/O W,
which is normally 1, a 0. The selected device then reads these data from the bus.

The reading and writing operations for the 8080 are under program control.
An OUT instruction executed by the 8080 causes the outputting of data to a device.
Executing an IN instruction causes a device to be read from. The accumulator
register in the 8080 system receives data during an IN instruction and sends data
during an OUT instruction. If an IN instruction is executed, the data from the
selected device are read onto D, to D, and from there into the accumulator. If an
OUT instruction is executed, the data are read from the 8080 system’s accumulator
onto D, to D,, and then the selected device accepts the data on D5 to Dy. (This
accumulator is the same accumulator used for arithmetic operations such as those
described in Chap. 5. The internal operation of the 8080 microprocessor is covered
in Chap. 10. Section 10.11 covers program operation.)

An interface design for the keyboard of Fig. 7.18 is shown in Fig. 8.20. The
keyboard is given the device number 1, or binary 00000001. Therefore the lines
A;to A, are Os and A, is a 1 when the keyboard is selected. The NAND gate
in Fig. 8.20 shows these inputs to be NANDed along with I/O R. Now, when
I/O R is a 1(I/O R a 0), the 8080 bus is saying, ‘‘Place the selected device’s data
on D, to D,.”’ In this design, if A, to A, contain 00000001 and I/O R is a 0, then
the output of the NAND gate becomes a 0. This enables the tristate drivers con-
nected to K, to K|, the keyboard output from the flip-flops in Fig. 7.19. As a
result, the values of K, to K|, are placed on bus lines D, to D, where the 8080 bus
can read them (into its accumulator).

Notice that the output of the NAND gate is normally a 1, which disables the
tristate drivers so that they have high impedance and write nothing on bus lines D,
to Dy, '

A major question now arises: At any given time the operator of the keyboard
may or may not have depressed a key, so that the keyboard may or may not have
new information for the 8080. If the keyboard is simply read, the 8080 cannot tell
whether the character supplied is new or old. (The same key could be pressed
twice in succession.) To compensate for this, a system is used in which a keyboard
status word can be read by the 8080 bus which will tell whether a new character

1*This I/O R line corresponds to the READ line in Fig. 8.13; the 1/O W line corresponds to the
WRITE line in that figure.
4We refer to the 8080 microprocessor chips as simply the 8080, as is common practice.
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is ready to be read from the keyboard. The scheme used here is the one most used
for this kind of interface.

Figure 8.21 shows the status word generator interface for the keyboard. We
have given this keyboard status word generator the device number 2. The keyboard
status word is used as follows. If a new character is available from the keyboard,
the keyboard status word will have a 1 in the D, position. If there is no new
keyboard character, a 0 will be in the D, position. The remaining D, to D, of the
keyboard status word will always be Os.

The interface operates as follows. The program in the 8080 system reads the
status word (an IN instruction is executed). The accumulator now contains the
status word, and the program sees whether, it has a 1, in which case the keyboard
should be read. If the status word is all Os. the program goes on to other programs
or devices or, if it has nothing else to do. simply continues to read the status word
until a 1 is found.

Interfacing a key-
board to the 8080
microprocessor.
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The operation of the keyboard status word interface is shown in Fig. 8.21.
When a key is depressed, the READY flip-flop is set to a 1, as shown in Fig. 7.19.
Therefore when the I/O R is made a 0, indicating a device read, and the device
number on A, to A, is 00000010, the NAND gate output in Fig. 8.21 goes to a 0,
enabling the tristate devices so that a 10000000 is placed on D, to Dy, indicating
that the keyboard is ready to be read.

When the keyboard is read, the READY flip-flop is cleared (reset) by the
signal generated in Fig. 8.20. Therefore, if keyboard status words are read in the
interval between when the keyboard has been read and when a key is depressed,
the output on D, to Dy will be all Os.

The described use of a status register in the interface circuitry to give the
status of an input-output device to the CPU is the most widely used technique for
interfacing of this sort. In more complicated input-output devices, such as disk
memories, there are more status bits in the status word which have a meaning, and
these bits are set and reset by the processor and disk controller as operations are
sequenced.




PROGRAM CONTROL OF KEYBOARD INTERFACE

*8.6"5 The interface design for the keyboard is intended to be under program
control. Thus a section of the program in the microprocessor will examine the
keyboard status register to see whether the keyboard has data, if it does, data are
read from the keyboard.

Table 8.1 shows a section of program for the 8080 microprocessor which
will read from a keyboard. The 8080 system has an 8-bit byre at each address in
memory. Each OP (operation) code, which tells what the instruction is to do, is a
single byte in memory. There is an IN instruction with OP code 11011011 (binary),
which tells the microprocessor to read from an input-output device. The number
of the device (device code) immediately follows the IN instruction’s OP code in
the next byte.

In Table 8.1 the presentation of the program listing is arranged as follows.
The program in assembly language is to the right. The program as actually stored
is in the two left columns, which lists addresses in memory followed by the contents
of each address in hexadecimal. The Label column lists names for locations in the
memory, enabling programs to use names in memory instead of actual numeric
addresses.

For example, this program starts at location 030 in memory. At this location
is the value DB, the OP code for the IN instruction. The comments (to the right)
are always preceded by a slash; the assembler ignores these comments.

The location 030 in memory is given the name KEYSTAT in the Label
column.

In location 031 there is the device number 2; therefore, the microprocessor
will read location 030, find the IN instruction OP code, and read location 031,
finding in it the device number 2. The microprocessor will then place the value 2
on the address lines and issue an input-output device read sequence on the bus.

This will result in the status register interface placing 00000000 on the data
lines if there is no character to be read from the keyboard and placing 10000000

15Sections with asterisks can be omitted without loss of continuity.
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TABLE 8.1

LOCATION ASSEMBLY LANGUAGE

IN MEMORY CONTENTS LABEL OP CODE OPERAND COMMENTS

030 DB KEYSTAT IN 2 /READ STATUS WORD

031 v 02 i : /INTO ACCUMULATOR

032 ' E6 ANl 80H /AND ACCUMULATOR BITS
034 +CA JZ . KEYSTAT /JUMP BACK IF ZERO

035 30 ‘ - , o

037 ‘08 N et < /READ KEYBOARD

038 01 : ' ‘
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if there is a character. This value will be read by the microprocessor into its
accumulator, completing the instruction.

The next instruction is an ANI instruction with OP code E6. The ANI in-
struction performs a bit-by-bit AND of the byte following the instruction, in this
case 10000000 (binary), with the accumulator. If the keyboard is ready to be read,
this will result in a 1 in the leftmost position; if not, a 0.

The ANI instruction also sets a flip-flop called Z (for zero) in the 8080 to a
1 if the results of the AND contain a 1 and a 0 if not. Therefore, if a character is
ready to be read, Z will contain a 1; if not, it will contain a 0.

The JZ is the OP code for a ‘‘jump-on-zero’’ instruction in the 8080. If the
Z flip-flop is a 0, the microprocessor will take its next instruction word from the
address given in the bytes'® following the JZ; if Z is a 1, the instruction following
these 2 bytes will be executed. As a result, if a character is ready to be read, the
microprocessor will read the IN instruction 037 next; if no character is ready, the
microprocessor will jump back to location 030. Notice that the programmer has
used the label KEYSTAT instead of giving the numeric value in the address part
of the instruction, but the actual address appears in the Contents column. (The
assembler determined the location.) Also, note that a complete address in the 8080
requires 2 bytes (2! words can be used in memory). The lower-order (least sig-
nificant) bits come first in an instruction word, followed by the higher-order bits.

When the keyboard is to be read, the instruction word beginning at location
037 will be executed. This is an IN instruction, but the device number is 1, so the
keyboard itself will be read from.

When the instruction is executed, the 8080 will place the device number 1
on its address lines and then generate a device read sequence of control signals.
As a result, the keyboard interface will place the character in the keyboard buffer
register on the data lines, and this character will be read into the 8080 accumulator,
ending the read process.

INTERFACING A PRINTER

8.7 The preceding sections have detailed the reading of data from a keyboard
into a microprocessor (CPU). We now examine outputting characters from a micro-
processor into a printer.

We assume that the printer uses an ASCII character in 8-bit parallel forn. to
cause the printing of a single character. In 8080 interfacing, first the printer .-
selected. To do this, since different output devices may be connected to the micro-
processor, the printer is given a unique device number, and we assume that the
number is 3 (decimal). When the printer is selected, this number will appear on
the microprocessor address lines A, to A, in binary.

Figure 8.22 shows an interface design. A NAND gate and six inverters are
connected so that the NAND gate will have a 0 output only when the number 3
appears on A, to Ay and I/O W is a 0. This NAND gate’s output is used as a GO
signal, which ultimately causes the printer to print the character on data lines D,
to D. The I/O W signal is pulled negative (to a 0) when the character to be printed

16The 8080 system address has 2'® words of memory; thus 2 bytes are required for a complete address.
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is available on D, to D, and the device address (3 in this case) is on lines A,
to Ay.

A flip-flop called character ready is used to signal the printer that a character
is ready to be printed. The printer must read this flip-flop and then print the
character.

The program instruction which causes this character transfer in the 8080 is
called an OUT instruction. The OUT instruction occupies two 8-bit bytes in memory,
with the second byte containing the device number. When the OUT instruction is
executed, the contents of the accumulator are placed on D, to D,. Execution of
the OUT instruction causes the printer to print a character corresponding to what-
ever code was stored in the accumulator.

The above implies that the computer program in the 8080 memory has pre-
viously stored the ASCII character for the character to be printed in the accumu-
lator. (A load-accumulator instruction, described in Chap. 10, will effect this. For
now we restrict our discussion to the interface strategy.)

There is a basic problem with the above scheme. A printer is a very slow
electromechanical device, and the microprocessor, because of its high speed, is
capable of flooding the printer with characters which it cannot possibly print. An
attempt to print only after a pause between each character will be difficult to
implement because the printer may require different time intervals to respond to
different characters.

There are two basic solutions to this problem. One is to have the micro-
processor examine the printer at regular intervals to see when a new character can
be printed. If the printer can print, it ‘‘raises a flag”* (turns on a flip-flop) which
the microcomputer reads. If the flag is a 1, the microcomputer outputs a character
to be printed; if the flag is a 0, the microcomputer goes back to what it was doing
and then examines the printer again at a later time. (The computer may simply
continue to examine the flag until it goes on.)

The other solution is to have the printer signal the computer with an INTER-
RUPT line whenever it is able to print. The computer then services this interrupt
by feeding the printer a character.

We use the first technique in our example and explain interrupts in the fol-
lowing section.

All that is required to respond to a query from the 8080 microprocessor is
shown in Fig. 8.23. When the printer is clear and able to handle a character, it
sets the flag flip-flop on. The flag is then made a bit in a status register of 8 bits.

The program step to read the flag involves transferring an entire 8-bit char-
acter placed on the data lines from the status registers into the accumulator. The
status register is given device number 4. When an IN instruction with device
number 4 is executed by the microprocessor, the number 4 comes up on A, to A,,
and finally the 1/0O R line is brought low. This causes the transfer of the flag and
its associated Os into the microprocessor accumulator. Another instruction must
then examine the accumulator to see whether it is all Os or contains a 1. If the
accumulator sign bit is a 1, the printer is ready for a character; if not, the computer
must wait.

The above interfacing technique is widely used because of its simplicity of
implementation. Using a flag (or several flags) to determine an output device’s
status, placing the flag(s) in a status register, and then reading the status register
using a program are a standard computer interface technique.
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8.8 The preceding examples showing how to interface a keyboard and a printer
demonstrated a technique in which the program was used to examine flags in status
registers to see whether an input-output device either had information or could
accept information. This technique is widely used, particularly in microcomputer
and minicomputer systems where not too many external devices are to be interfaced
and sufficient time is available that the program can continually test the devices to
see whether they are ready. Stepping from status register to status register by using
a program to see which device is ready is called polling the 1/0 devices.

In many cases, however, there will be too many devices for this scheme to
be successful. Or there will be a great amount of computation to be performed, so
that continually taking time out to examine the status of input-output devices cannot
be tolerated.

To deal with this problem, computers have interrupt systems for input-output
devices, in which a given device can cause the program operation to be interrupted
long enough for the input-output device to be serviced.

The operation of such a system can best be shown by an example. Suppose

Printer status genera-

tor.
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that we have a computer system with a keyboard, a printer, and an input from an
A-to-D converter (ADC) measuring temperature in a physics experiment. A great
deal of computation is required to process the temperature reading from the ADC.
The operator of the keyboard examines the results of the computation, which are
printed on the printer, and occasionally the operator comments, using the keyboard.
These comments are to be printed by the printer along with the temperature and
the results of the calculation.

In this case the keyboard inputs are made infrequently, the printer is kept
quite busy, and we assume that the A-to-D inputs are read at fairly frequent intervals.

The interrupt system works as follows. The computer normally is processing
the inputs from the ADC. Each time a key on the keyboard is depressed, however,
an interrupt signal is generated by the keyboard, the program in operation is in-
terrupted, the keyboard is serviced, and the program which was interrupted is
returned to. Similarly, a short list of characters to be printed may be stored in the
computer, and the program adds to this list as it gathers results. Whenever the
printer can print, it generates an interrupt, current program operation is interrupted
long enough to service the printer by giving it another character to print, and the
original program operation then continues at the point at which it had been inter-
rupted.

The ADC will also generate interrupts which must be serviced by reading
the output, and the readings are processed as soon as time is available.

To effect the above, there are some features an interrupt system should have.
For instance, it may be necessary to turn off the interrupt feature of the printer,
since when there is nothing to print, the printer would simply generate many time-
consuming interrupts. (It can always print when there is nothing to print.) It might
be necessary to turn off the entire interrupt system for a short time, since during
servicing of the keyboard, an interrupt from the printer might cause an interrupt
of an interrupt.

In order to examine the interrupt feature more closely, we note that the
following things must be done each time an interrupt is generated:

1 The state of the program in operation when the interrupt is executed must be
saved. Then the program can be reentered when the interrupt servicing program is
finished.

2  The device that generated the interrupts must be identified.
3 The CPU must jump to a section of the program that will service the interrupt.

4  When the interrupt has been serviced, the state of the program which was
interrupted must be restored.

S  The original program’s operation must be reinitiated at the point at which it
was interrupted.

Discussion of how the interrupted program is handled and how returns are
made to this program is deferred to Chap. 10 since more information is required
about program execution. The mechanism for interrupt generation and identifying
the device that wishes to be serviced can be dealt with here, however.

The interrupts are initiated by a device placing a 1 on an interrupt wire in



the bus. This notifies the CPU that a device wishes to be serviced. The CPU then
completes the instruction it is executing and transfers control to a section of program
designed to service the interrupt.

In the 6800 microprocessor and in the 6150, for example, the various devices
are polled by examining the status registers, each in turn, until the interrupting
device is located. This device is then serviced.

In the 8080 microcomputer and in the PDP-11 minicomputer, for example,
the place in memory where the service program is located for the particular device
that generated the interrupt is read into the CPU by the interrupting device. This
is called a vectored interrupt. In effect, the device tells the CPU ‘‘who did it”” and
does not wait to be asked.

There can be a problem when several devices generate a 1 signal on the
interrupt wire at the same time. If the devices are polled, the polling order deter-
mines who gets serviced first, and a device not serviced will continue to interrupt
until it is serviced. For the vectored interrupt, however, if two devices attempted
to write their identifier into the CPU at the same time, they might overwrite each
other, so a scheme must be devised by which only one device tells the CPU whom
to service. This is accomplished by chips'” external to the CPU, which set a priority
on the devices that can interrupt and handle only the highest priority device with
its interrupt on.

More details on interrupts are given in the sections on particular computers
in Chap. 10.

When microcomputer systems become larger and more peripheral devices
are used, the interface design problem increases. To be efficient and use the micro-
processor CPU chip to its utmost ability, it is necessary to use an interrupt system
for peripheral devices so that the' CPU is not burdened with pollirg peripherals
continuously. To remove the load of servicing peripherals from the CPU, several
microprocessor manufacturers produce separate chips that are 1/O processors and
that work closely with the CPU in handling peripheral servicing. Other important
chips now produced to facilitate peripheral handling convert serial input signals
(like the ASCII signals in Fig. 7.21) to paraliel and place the parallel form on the
bus as well as converting from parallel to serial (to drive some printers and mo-
dems). Chips are also produced to aid in interrupt processing, including the selec-
tion of the highest-priority peripheral demanding service, etc.

Figure 8.24 shows a block design of a system based on the 8086 micro-
processor chip.'® (This system is similar to IBM’s personal computer system which
uses the 8088.) Examination of this layout reveals how chips are assembled to
interface devices in larger systems.

Figure 8.24 shows the parts of the 8086 microprocessor: (1) An 8234 clock
generator generates the clock signal for the 8086 and is involved in resets. (2) The
8081 I/O processor (IOP) handles interrupts for the 8086 (the 8086 can be inter-
faced without this chip, it simply takes some 1/0 processing load from the 8088).

""The IC packages used range from gate arrays which examine and allocate priority to programmable
interface controllers which contain ROMs with programs for the specific interfaces to be implemented.
**Intel (and others) also make an 8086 microprocessor chip which would interface like this chip except
that the 8086 handles data 16 bits at a time while the 8088 has 8-bit data paths, and so a 16-bit data
bus would be used for the 8086.
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3) The 8288 bus controller buffers control signals and handles the time multi-
plexing of the control signals (the 8086 uses the same lines for address lines and
control lines, producing control signals to tell which is being output at a given
time). (4) The 8282 latches simply hold the address information and provide tristate
drivers for the bus. This is necessary for two reasons: First, the 8086 outputs are
not capable of driving many other circuits; second, the 8086 time-multiplexes its
address signals, and the latches are used to hold the address while control signals
are output on the same lines. (5) The 8286 transceivers simply provide tristate
drivers and considerable drive capability for the data bus and receivers to read from
the Data bus. (6) The 8259 is a programmable interrupt handler which examines
demands for service from the peripherals, determines the highest-priority demand,
and then interrupts the 8086-8089 combination and outputs a *‘vector™ telling
which peripheral requires service. (7) The 8259 programmable parallel interface
controller handles keyboard interrupts. The term programmable means that the
input-output configuration and data-handling functions of the chip are set up by
means of data transfers from the 8086 under program control. (8) The 8251 pro-
grammable serial interface controller is used to handle serial data and to provide
control signals for modems. This chip is programmable and such parameters as (a)
the number of stop bits in a character transmission (refer to Fig. 7.21, the RS.232C
interface it supports), (b) the speed of transmission and reception (controlled by a
clock and a divide action), (¢) whether parity is odd or even, etc., are all controlled
by a register in the 8251 which is loaded from a program over the data lines by
the 8086. (9) The floppy disk and CRT controllers are special interface chips made
to service particular devices.

A STANDARD BUS INTERFACE

8.9 There has been some attempt to standardize on buses, particularly by such
organizations as the IEEE and the National Bureau of Standards. Most buses which
have become standards have been developed by computer and electronic concerns
and have been used and adopted by several manufacturers before the standards
organization have developed an official document.

Note that these bus standards do not simply have pin connections and L.ne
operation procedures, but also specify connectors and printed-circuit board rizes.
Thus a system built around one of the buses can add printed-circuit boards con-
taining more memory, interfacing for 1/0 devices, etc., as long as the board and
bus operation for the board meet the standard specifications. So when the organi-
zation in Fig. 7.20 is used, the connectors, and boards, and interfaces are all
prescribed by the standard.

A widely used bus and its protocol, which has been developed for interfacing
instruments and microcomputers, are briefly outlined here. This bus, often called
the general-purpose interface bus (GPIB), is described in IEEE Standard 488-1978,
which is a microcomputer bus standard.

Figure 8.25 shows the basic interface and bus lines which can be used to
interconnect a number of modules. Each bus line performs at least one interface
function, depending on the interface capabilities. The specifications for cable con-
struction and connectors are given in the standard.
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At a given time, any particular module connected to the bus may be idle,
monitoring the activity on the bus or functioning as (1) a talker, (2) a listener, or
(3) a controller. As a talker, a module sends data over the bus to a listener (or
listeners). As a listener, a module receives such data. As a controller, it directs the
flow of data on the bus, mainly by designating which modules are to send data
and which are to receive data.

Notice that the bus consists of 16 signal lines, grouped functionally into three
component buses. The dara bus (eight lines) is used to transfer data in parallel
from talkers to listeners; it also transfers certain commands from the controller to
subordinate modules. The transfer bus (three lines) is used for the handshaking
process by which a talker or controller can synchronize its readiness to receive
data. The general interface management bus (five lines), as its name suggests, is
used principally by the controller.

Each system must have one module to designate listeners and talkers, and
this module is called a controller. The controller uses a group of commands,
referred to as interface messages, to direct the other modules on the bus in carrying
out their functions of talking and listening.

Normally the controller would be the CPU of a computer, and this unit would
generate the command signals on the bus to the other modules, which would then
respond. Because this interface is designed to handle a large number of different
types of modules, the specification is reasonably complicated and general. The
basic procedure for generating a transfer of data on this bus is as follows. First,
the controller designates a listener by placing the listener’s address (each listener
is given a 5-bit address) on the data bus and raising the appropriate control lines.
Then a talker is designated by placing the talker’s address on the data lines and
raising the appropriate control lines. Finally, the talker and listener are told to
proceed, and the talker places data, 8 bits at a time, in parallel on the data lines.

In the transfer of data from talker to listener, certain basic problems arise in
the operation of every bus.'® These problems are solved by a handshaking procedure
whereby talker and listener interact using the control lines. It is convenient to
describe this procedure with a flowchart, as shown in Fig. 8.26. This diagram
shows that three control lines, called DAV, NRFD, and NDAC (defined in Fig.
8.25), are used to control each data byte transfer. The talkers and receivers each
raise and lower the control signals, as shown by the flowchart, and the talker places
data on the data bus at the appropriate time.

The necessary control circuitry to implement this handshaking and the other
required functions must be provided by each module’s interface circuitry. It is
possible to design a line of input-output equipment including instruments, tape
punches, etc., and to interface each to the same bus by using the interface speci-
fication. IC manufacturers often furnish single chips made to provide the necessary
logic for an interface.

'These problems concern how the listener knows when data are on the bus and how the talker knows
when the listener has received the data. The bus described here is an asvnchronous bus. Microprocessors
and minicomputers often use synchronous buses where one wire in the bus contains a clock and the
clock signal is used to time data transfers. In these systems, the talker must place the data on the data
wires, and the listener must be ready to receive data when the clock edge arrives. A synchronous system
is faster and simpler but less flexible.
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8.6 Explain how a keyboard with an 8-bit output would be interfaced to the
68000 bus.

8.7 Draw waveforms for the 68000 bus for an 8-bit transfer of data to a printer.

8.8 The 8086 configuration in Fig. 8.24 is fairly complex. Discuss the benefits
of such a configuration for a personal computer, and contrast it with a micro-
processor used as a traffic light controller or an automobile ignition control system.

8.9 Explain the handshake on an asynchronous bus.

8.10 Design an interface for a 256-word 8-bit memory using the chip in Fig.
6.10 for the bus timing in Fig. 8.14.

8.11 Design an interface for a 256-word 8-bit memory using the chip in Fig.
6.10 for the bus timing in Fig. 8.13.

8.12 In the status register scheme used to interface a microprocessor to a key-
board, only 1 bit is used to determine the status of the keyboard. A status register
could have several status bits, however, each with a different meaning. Discuss
the use of the AND instruction to test various bits in conjunction with the JUMP
instruction for the 8080.

8.13 The single status bit used in the printer interface status register is set on
and off by the printer. It could be controlled by the printer and the interface. Explain
how the interface would work in this case.

8.14 In an interface such as a printer there is a question as to how the interface
should notify the printer when the character to be printed is on the signal wires,
and how long the signal should be held there. There are two approaches:

(1) The printer must read the information within a stipulated time. In this case
signals with data are placed on the interface wires (the interface,device address
having already been placed there) and are always held for some fixed time which
is acceptable to all the interface circuitry used.

(2) The device being read into notifies the interface when it has received the
characters. In this case another interface wire is used, and a signal is placed on
this wire by the device being read into when it has accepted the input data. This
is a handshake procedure where the interface device address is placed on the wires,
data are then placed on the wires, and a wire to the device is raised which says,
*“The data are on the lines.’’ The interface device then raises another wire, saying,
*“The data have been accepted.”

IBM uses the first technique in its 3081 interfaces, whereas the IEEE (and several
other standards organizations and computer manufacturers) use the handshaking
technique. Discuss the advantages and disadvarntages of each technique.

8.15 With the IEEE 488 interface it is possible to read into several devices at
the same time. In this case the system controller places the data on the wires and
then raises the wire, showing that the data are there. In responding, the devices
accepting data use the open-collector circuit shown in Appendix C so that if any
single device has not yet accepted the data, the response wire will be set to low.



Show how the open-collector circuit in Fig. C.5(a) ANDs and can only indicate
acceptance of data by moving the line to 1.

8.16 Show how the circuitry in Fig. 8.20 can be modified to interface a keyboard
with address 6 (device number 6).

8.17 Show how the program in Table 8.1 would be modified to service a key-
board with device number 8 and status register number 7.

8.18 Write a sequence of instructions which will read a keyboard and then print
the characters read on a printer. Give the keyboard device number 5 and the printer
device number 7. Number the status registers as you please.

8.19 Design an interface that will accept serial bit strings using ASCII and the
teletypewriter serial format shown in Fig. 7.21. The interface should buffer this
bit string of characters into the 8080 microprocessor.

8.20 Design an interface that will take a parallel data byte from an 8080 micro-
processor bus and convert it to serial for a teletypewriter.

8.21 Explain handshaking on a bus when data are transferred from a sender to
a receiver. How can this be used to prevent errors due to signal skew caused by
signals on different wires arriving at different times (skewed) because of the dif-
ferences in line length and characteristics and differences in delays through IC line
drivers, etc.?

8.22 For the standard instrument interface, draw the signals DAV, NRFD, and
NDAC for a data transfer from a talker to a listener. Assume that there are no
problems in transferring data, and indicate who is raising and lowering each signal.

8.23 For the standard instrument interface, indicate how the controller selects a
talker and a listener.

8.24 How is signal skew handled on the standard instrument interface?

8.25 Explain how peripheral devices interrupt a computer with a single bus or-
ganization.

8.26 Explain the meaning of direct memory access (DMA) and why it is desirable
in some cases.

8.27 Can you think of any problems that might arise in multiprocessor systems?

8.28 If devices and status registers are numbered 1, 2, 4, 8, . ... and only a few
are used (less than or equal to the number of address wires), the gate to determine
which device is selected in an interface can be simplified (or omitted). Show why.

8.29 Show in flowchart form the procedure for testing and finding which switch
is closed, if any, for the encoding scheme described in Question 7.43.

8.30 How many steps would it take to scan an entire keyboard for the ASCII
given in Fig. 7.7, using the two-dimensional keyboard scheme?

8.31 When the encoding scheme in the preceding questions is used, if the switches
bounce, that is, if a closure of the switch is not constant but goes on and off when
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a key is depressed, this complicates the encoding. Explain some problems that
might arise from contact bounce if the above technique is used.

8.32 How would you suggest smoothing the bounce from the contacts for the
encoding scheme from Question 8.31

8.33 Draw an encoder matrix for three ASCII characters (not shown in the chap-
ter) as in the section on keyboards.

8.34 The signal that strobes the values into the flip-flops which read from the
encoder of Fig. 7.18 must be slightly delayed. Explain why.



THE CONTRGL UMT

This chapter describes the control sections of digital computers. Preceding chapters
illustrated techniques whereby arithmetic and logical operations may be performed
and information read into and from various memory devices. To utilize the speeds
and information handling capabilities of these techniques and devices, it is nec-
essary to sequence automatically the various operations which occur at speeds
compatible with those of the rest of the machine. The control element, therefore,
must be constructed of high-speed circuitry. The basic elements used in the control
clement of a digital computer are described in Chaps. 3 and 4, and most of the
concepts underlying the functioning of the control element are presented in Chaps.
3 through 5.

The control unit may be defined as *‘the parts that effect the retrieval of
instructions in proper sequence, the interpretation of each instruction, and the
application of the proper signals to the arithmetic unit and other parts in accordance
with this interpretation.””!

The function of the control circuitry in a general-purpose computer is to
interpret the instruction words and then sequence the necessary signals to those
sections of the computer that will cause it to perform the instructions. Previous
chapters have shown how the application of the correct sequence of control signals
to the logic circuitry in the arithmetic element enables the computer, to perform
arithmetic operations, and how binary words may be stored and later read from

'From IEEE Standard Dictionarv of Electrical and Electronics Terms, IEEE Standard 100-1977, In-
stitute of Electrical and Electronics Engineers, Inc.
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several types of memory devices. For the computer to function, the operation of
its sections must be directed, and the control circuitry performs that function.
This chapter first presents some introductory material concerning computer
instruction-word execution. Two general-purpose computers are used as examples.
Then a small general-purpose computer’s control circuitry is described. The basic
ideas in the design of control circuitry are presented in these sections. Register
transfer concepts are emphasized. The final sections describe microprogrammed
computer control concepts, giving the basic ideas used in this class of computers.

OBJECTIVES

1 Instruction word formats and instruction repertoires for two general-purpose
binary computers are presented.

2  The design of the control section for a small computer is shown with a
description of overall design procedures for large and small computers.

3 The use of register transfer language in designing and maintaining computers
is presented. The control section designs in the chapter are based on this language
and associated procedures. These are the most widely used techniques for digital
computer system descriptions.

4  The control structure of a computer can be implemented by using a ROM,
and then the computer is said to be microprogrammed. The subject is explained
along with how register operations are sequenced when microprogramming is used.

CONSTRUCTION OF INSTRUCTION WORD

9.1 A computer word is an ordered set of characters handled as a group. Basi-
cally all words consist of a set of binary digits, and the meaning of the digits
depends on several factors. For instance, the bits 01000100 could represent the
decimal number 68 in a pure binary computer and the decimal number 44 in a
BCD computer which uses an 8, 4, 2, 1 code. Thus the meaning of a set of digits
is sometimes determined by its usage. In addition, other interpretations are possible,
for instruction words are stored just as are data words, and the digits could represent
an instruction to the computer. Since memory locations can store either instruction
words or data words, the programmers and system operators must see that the
instruction words are used to determine the sequence of operations which the
computer performs, and that reasonable meanings are assigned to the data words.
If we assume that each memory location can contain a single instruction
word, then a computer will start with the word stored in some specified address,
interpret the contents of this location as an instruction, and then continue taking
instruction words from the memory locations in order, unless a HALT or BRANCH
instruction is encountered. The data to be used in the calculations will be stored
in another part of the memory. Since the computer can store either instructions or
data in the same memory addresses, considerable flexibility of operation results.




An instruction word in a digital machine generally consists of several sec-
tions. The number of divisions in the word depends on the type of computer.
Because of its wide usage and simplicity, we describe what are called single-
address instruction words in this and the following sections, leaving more com-
plicated formats for later. The single-address instruction word is widely used in
microcomputers and minicomputers, as well as in many of the larger computers;
it serves as a good basis for introducing control unit operations. Basically each
single-address instruction word contains two sections: the operation code (OP code),
which defines the instruction to be performed, such as addition, subtraction, etc.;
and the address part, which contains the location of the number to be added or
subtracted or otherwise used (the operand).

As an example, we now examine the Harris 6100 microprocessor. This micro-
processor IC chip is used in the DEC word processors, one of their personal
computers, and several other items including disk drive controllers, printer con-
trollers, etc. The instruction word format, instruction repertoire, and general ar-
chitecture originated in the DEC PDP-8 series, which was DEC’s first ‘*big win-
ner’” in the minicomputer area and the largest-selling minicomputer for some years.
The Harris 6100 is widely used in DEC products, among others, and is generally
available.

The 6100 has a basic memory word and instruction word of 12 bits.?> The
instruction word comprises two sections, an OP-code part and an address part, as
shown in Fig. 9.1(a). There are only 3 bits in the OP-code part, and so only eight
basic instruction types are possible. In this section we describe only three of these,
leaving the remainder for Chap. 10. The instructions we study are the TAD (2s
complement add), the DCA (deposit and clear), and the JMP (jump) instructions.

The TAD instruction [Fig. 9.1(b)] has an OP code of 001 (in binary). It tells
the computer to add the number located in memory at the address given in the
address part of the instruction to the number currently in the accumulator and to
place the sum in the accumulator. Thus if the address part of the instruction were
000100110, this would reference the number at address 38 (decimal) in memory.
The computer instruction word that will cause the 12-bit number at address 38
(decimal) memory to be added to the number in the accumulator will be
0010001001 10. Words are generally written in octal in the 6100, and this word
would be 1046 in octal.

The DCA instruction has OP code 011 in binary. This instruction tells the
CPU to deposit or store the present contents of the accumulator at the address given
by the address part of the instruction. Thus the instruction word 011000001101
tells the CPU to store the current contents of the accumulator at location 13 in the
memory. The DCA instruction also clears the accumulator to all 0Os.

Let us now examine two program steps, a DCA followed by a TAD. Let
these two instruction words be at memory locations 41 and 42 (octal). Let the DCA
refer to location 50 (octal) and the TAD to location 51. The arrangement is as
follows:

This is a good size for a word processor because a character plus underscore, overbar, and other options
in word processors can be stored in the 12 bits at each location.
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1110 98 7 6 543 210

(a)

OP code for
is 001

001000000111 Example: This instruction
word tells computer to
add word at location 7
in memory into
the accumulator

{b)

OP code for DCA
instruction is 011

011000001101 Example: This instruction
word tells computer to
deposit the contents of
the accumulator at
the address in memory
given in the address
section which is 13,,

{c)
FIGURE 9.1
6100 instruction
ds. (a) | i

xg:dsfo(f;a':s&‘;c}fg LOCATION IN MEMORY MEMORY CONTENTS MEMORY CONTENTS

\ rmat. (OCTAL) (OCTAL) (BINARY)

instruction format.

(c) DCA instruction i — e

format. a1 3050 011000101000
42 1051 001000101001
50 0222 000010010010
51 0243 000010100011

We now analyze the action of the computer as it executes these two instruc-
tions. Suppose that the accumulator contains 0102 (octal) when the instruction at
41 is executed. Then the value 0102 will be deposited (stored) at location 50,
overwriting or destroying the value 0222 which was in location 50. The accumu-
lator will be cleared to all Os.

Next, the instruction at location 42 in memory will be executed. This instruc-
tion will add the value at location 51, which is 0243 (octal), to the current value
in the accumulator.

Therefore, when execution is begun on the instruction word at location 43
(not shown), the accumulator will contain 0243, and the contents of memory lo-
cation 50 will be 0102.



TABLE 9.1 SECTION OF 6100 PROGRAM

ADDRESS IN

MEMORY CONTENTS ASSEMBLY LANGUAGE

(OCTAL) (OCTAL) LABEL OP CODE ADDRESS COMMENTS
0041 . DCA LOC

0042 TAD

0043 TAD L

0045 JMP

0062 Loc2 .-+ 0200

0053 .  Loc3. - 0212

‘0054 Locs 0310

Another instruction in the 6100’s repertoire is the JMP instruction with OP
code 101. This instruction causes a jump in memory to the address (location) given
in the address part of the instruction word. For example, suppose the value at
location 71 (octal) in memory is 101001000011 (binary) or 5103 (octal). When the
CPU reads this as the instruction word JMP 0103, it will cause the next instruction
to be taken from location 103 in memory and not from location 72.

Table 9.1 shows the three instructions so far introduced, combined into a
five-instruction-word section of program. Assembly language and octal values are
both shown in this table.

The operation of these instructions by a CPU would be as follows. When
location 41 is read, the DCA instruction stores the current contents of the accu-
mulator, which is then cleared to Os. The next instruction word is TAD LOC2,
which causes the number 0200 at location 52 to be added to the accumulator,
giving 0200 in the accumulator.

When the TAD LOC3 instruction is read, it causes the number 0212 at
location 53 in memory to be added to the number 0200 in the accumulator, giving
0412 in the accumulator. The CPU then executcs the instruction DCA LOC4,
causing the value in the accumulator, which is 0412, to be stored at address 54 in
the memory. The CPU then reads the JMP 71 instruction, causing it to fetch the
next instruction word from location 71 in the memory (and not from location 46).

After this section of the code has been executed, the sum of the numbers at
locations 52 and 53 is stored in location 54, and the CPU jumps to location 71 in
memory.

The 6100 has several addressing features which are discussed in the next
chapter. Also, because of the short OP code (3 bits), several of the other instructions
are very clever (and somewhat tricky). More details of this also are given in
Chap. 10.

INSTRUCTION CYCLE AND EXECUTION CYCLE
ORGANIZATION OF CONTROL REGISTERS

9.2 A digital computer proceeds through the execution of a program with a basic
thythm or pattern in its sequence of operation which is produced by the necessity
of drawing both instructions and operands from the same memory.
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The basic sequence of operations for most instructions in a digital computer
of the single-address type consists of an alternation of a time period called the
instruction cycle and a period called the execution cycle. During the instruction
cycle, an instruction word is obtained from the memory and interpreted, and the
memory is given the address of the operand to be used. During the execution cycle,
the memory obtains the operand to be used (for instance, the multiplier if the
instruction is a multiplication or the augend if the instruction is an addition), and
then the operation called for by the instruction word is performed upon this
operand.

Most computers now being made use an IC memory for the storing of both
instruction words and operands or data. The cycle time for the memory is fixed.
Once we tell the memory that we wish to read from it or write into it, a certain
time will elapse before we can instruct the memory that we are again ready to read
or write. If we are reading from the memory, the selected word will be delivered
a short time after the memory has been given the address of the word to be read
and has been instructed to read.

If the inemory is to be written into, the word to be written as well as the
address at which we wish to write it must be given to the memory. A WRITE
signal also must be given to write this word at the location or address which we
have given. As discussed in Chap. 6, the address which we write into or read from
in the memory will be put into a memory address register and the word to be
written into the memory put into the memory buffer register. When we read from
the memory, the word read from the memory is delivered to the memory buffer
register.

During each instruction cycle, the instruction word is transferred by the memory
into the memory buffer register. To obtain this word, we must tell the memory to
read and give the memory the address to read from. During the instruction cycle,
the instruction word which was read into the memory buffer register is interpreted,
and the address of the operand to be used is delivered to the memory address
register. For many instructions this will be the address part of the instruction word
which was read from the memory during the instruction cycle. During the execution
time or execution cycle, an operand is obtained from or written into the memory,
depending on the instruction word which was interpreted during the previous in-
struction time period.

For example, if the instruction being interpreted is an ADD instruction, the
location of the augend is given in the address part of the instruction word, and this
address must be given the memory address register. The memory then obtains the
desired word and puts it into the memory buffer register. The computer must add
this word to the word already in the accumulator. Afterward the computer must
give to the memory the address of the next instruction word to be used and com-
mand the memory to read this word.

Note that the machine alternates between instruction cycles and execution
cycles. Also note that during an execution cycle we must store somewhere in our
control circuitry the OP code of the instruction word which was read from the
memory, the address of the operand to.be used (which was a part of the instruction
word read from the memory), and the address of the next instruction word to be
read from the memory and used.

As a result, there are several registers which are basic to almost every digital
computer. These are shown in Fig. 9.2 and are described as follows:
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Read FF

Clock

Note: Control signals are shaded thus

FIGURE 9.2

1 Instruction counter® This counter is the same length as the address section

of the instruction word. The counter can be either reset or incremented. A typical
logic diagram for the instruction counter could consist of the counter shown in Fig.
4.14(a), having a RESET line and an INCREMENT or ENABLE line. This counter
keeps track of the instructions to be used in the program, so that normally, during
each instruction time, the counter is incremented by 1, which will give the location
of the next instruction word to be used in the program. If, however, the instruction
is a BRANCH or JUMP instruction, we may wish to place part of the B register’s
contents into this counter, and the MB INTO IC line does this. The counter can
be reset to 0 when a program is started.*

It must also be possible to transfer the contents of this counter into the
memory address register, which is used to locate a word in memory. Normally the
instruction counter is increased by 1 during the performance of each instruction,
and the contents of the counter are transferred into the memory address register at
the beginning of each instruction time.

3In some computers the instruction counter is called the program counter.
*Most computers make it possible to load a selected address into the operation counter and thereby start
the machine at that selected address.

Control registers.

427
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2 OP-code register 'When an instruction word is read from the memory, the
OP-code section of this word must be stored in order to determine what instruction
is to be performed. If the computer has an OP code with a length of five binary
digits, the operation register will be five binary digits in length and will contain
the OP-code part of the instruction word which is read from the memory. Therefore
we must be able to transfer a section of the memory buffer register into the OP-
code register during the instruction time period.

3 Memory address register This register contains the location of the word in
memory to be read or the location to be written into.

4 R flip-flop When this flip-flop is turned on, it tells the memory to read a
word. (The flip-flop can be turned off shortly afterward, for it need not be on
during the entire memory cycle.)

5 W flip-flop Turning on this flip-flop tells the memory to write the word
located in the memory buffer register at the location given by the memory address
register.

6 [ flipflop When this flip-flop is on, the computer is in an instruction cycle.

7  Eflipflop The computer is in an execution cycle when this flip-flop is on.

SEQUENCE OF OPERATION OF CONTROL REGISTERS

9.3 Let us consider further the construction of the control circuitry of a digital
computer, again using the block diagram of the control registers, memory, memory
address register, and memory buffer register shown in Fig. 9.2.

The control signals necessary to the operation of this small single-address
computer are shown on the diagram and are as follows. There is a RESET IC line
which clears the instruction counter to 0. (This is often connected to a pushbutton
which clears the counter when the program is to be started.) There is an MB INTO
IC control signal which causes the contents of the memory buffer register to be
transferred into the instruction counter, and an INCREMENT IC control signal
causes the instruction counter to be incremented by 1. Another control signal is
MB INTO OP, which transfers the first five digits of the memory buffer register
that contains the OP code of an instruction word into the five flip-flops in the
operation register. The memory address register has two control signals. The IC
INTO MA control signal causes the contents of the instruction counter to be trans-
ferred into the memory address register, and the MB INTO MA control signal
causes the last 16 digits of the memory buffer register (which constitute the address
part of an instruction word) to be transferred into the memory address register.

During each instruction cycle of the computer, we must turn on the READ
flip-flop and at the same time (or earlier) transfer the contents of the instruction
counter into the memory address register. The memory will now read an instruction
word into the memory buffer register, after which time we can enable the MB
INTO OP line, transferring the OP-code section of the instruction word into the
OP-code register. The next actions that the computer will take are now dependent
upon the contents of the OP-code register.
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FIGURE 9.4
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CONTROLLING ARITHMETIC OPERATIONS

9.4 Consider the problem of directing the arithmetic element as it performs an
instruction word. Let us add an accumulator and a B register to the registers shown
in Fig. 9.2, thus forming the block diagram shown in Fig. 9.3. Five more control



signals are required to perform such instructions as ADD, SUBTRACT, CLEAR
AND ADD, and STORE:

1  RESET ACC This signal sets all the flip-flops in the accumulator to 0.

2 ADD This signal causes the B register to be added to the accumulator and
the sum transferred into the accumulator.

3 SUBTRACT This signal causes the B register to be subtracted from the
accumulator and the difference to be placed in the accumulator.

4 MB INTO BR This signal transfers the memory buffer register into the B
register.

5 AC INTO MB This causes the contents of the accumulator to be transferred
into the memory buffer register.

Figure 9.4 shows a single accumulator flip-flop and a single B register flip-
flop, along with the control signals and gates required for these operations. The
accumulator and B register are basically composed of as many of these blocks as
there are bits in the basic computer word. (The carry into the least significant bit
is connected to the SUBTRACT signal when 2s complement addition is used and
to the carry-out of the sign digit when the 1s complement system is used.)

One further thing is needed. We must distribute our control signals in an
orderly manner. Some sort of a time base, which will indicate where we are in the
sequence of operations to be performed, is required. To do this, each memory
cycle is broken into four equal time periods, the first of which we call T, the
second T, the third T,, and the fourth T,. If we-are in the first time period, we
need a signal which will tell us that it is now time T; during the second period,
we need a signal which will tell us that it is time T; etc.

Figure 9.5 shows a way of generating such timing signals. There is a clock
signal input, and the clock is assumed to be running so that during a memory cycle

CONTROLLING
ARITHMETIC
OPERATIONS

FIGURE 9.5
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TABLE 9.2 SEQUENCING OF CONTROL SIGNALS

LIST OF CONTROL
SIGNALS TO BE

INSTRUCTION TURNED ON COMMENTS

Y 3

ADD
land Ty

“land T,

- Land. Ty

land T,




d /,‘and 7.3 M

.famr .

CEandh,

Eand T,

Eand T,

~ ICINTO MA, SET .« The contents of the:i
. L RESETE | transferred .into the.
G . ister, giving the locati
tionf word.to

TABLE 9.2 SEQUENCING OF CONTROL SIGNALS (continued)
LIST OF CONTROL
SIGNALS TO BE
INSTRUCTION TURNED ON COMMENTS
SUBTRACT
land 75 SETR Tells memory to read instruction Wmd
“fandT, ' " MBINTO OP, Transfers OP-code pant of instruction word
BRI e " 'RESETR into OP—code regsater, wms éﬁm ﬂip-ﬂ
gty - flop. -
cotand T, “ INCREMENT iC Adds 1 to the instruction: eoumer, pmpaﬂng :
L ; for the next instruction.
fand 7, ' MB INTO MA, Transfers the address part of the mstruc~'
RESET |, SETE tion word (which is in the memory buffer
register) into the: memory address register.
S : Puts the computer in the execution cycle: -
: E and 'I‘o SETR Turns on the READ ﬁip»ﬁop, teﬂmg the ™
2 -memory to read aword,
5 £ and T, “MBINTOBR, Transfers the contents of the memory buffer
; RESET R register into -the '8 register. .Since the
memory buffer register now contains what
was read from the memaory, the subtrakiend
is transferred into the Brégtster sfso turns
vereii s off READ flip-flop. - :
~Eand T, suB *The contents of the 8 register dre sub-
s tracted from the accumulator, and the dif- |
S ference is placed in the aewmuiator.
Eand T, ICINTO MA, SET  The contents of the instruction counte

I, RESET E transferred into the memory address. mq- ’

ister, giving the location of the rext intruc-

5 i‘ on cycle flip-flop is!u“f?“

“Tells memorv w read instmcﬁan
" Transfers OP-code part qif instmction word

. . - flop. :
INCREMENTIC  Adds 1 to the instruction counter,praparmg'

- for the next instruction. . ,
MBINTO MA, Transfers the address part of the instrue- |
RESET |, SETE tion word (which is in the memory buffer

regtster) into the memory address fegister

CSETW, AC INTO Transfers word to be read into memory from .
MB accumulator into the memory buffér reg-

ister.
RESET W Turns off WRJTE ﬂurﬂop

~ Contents’ of miemory Buffer” register’ am

written into memory,

‘turned f
tion cycle ﬂtwﬂeﬁ\& Wﬁa&

. tion word to the memorys The jnstrustion:
cycle flip-flop is-turned. an, a nd the. oXpcu-

“"into OP-code register! turns off’ REA’D ﬂxp«"
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we obtain four clock pulses. If it requires 1 us to read into or write from the
memory, a clock pulse should be generated every 1 ws. Therefore the clock will
run at a rate of 4 MHz.

The circuit has four output lines, designated Ty, T, T,, and T;. When the
computer is in time period T, the output line T, will carry a 1 signal, and T, T,,
and T will be Os; at time T, only, line T, will have a 1 signal on it, etc.

Let us now write, in a short table, the sequence of operations which must
occur during each of the ADD, SUBTRACT, CLEAR AND ADD, and STORE
instructions. Notice that when the instruction cycle flip-flop is on, the operations
during times T, and T, are always the same. In Table 9.2 the control signal to be
turned on (or made a 1) is listed to the left, and what the signal does is listed to
the right.

From this table of operations it is possible to design the control section of
this small computer. The inputs are the OP code stored in the OP-code register,
the timing-signal distributor, and the / and E flip-flops.

Notice, for instance, that when it is time T, and we are in an instruction
cycle, we always turn on the READ flip-flop, telling the memory to read the
instruction word located at the address in the memory address register. Then we
assume that the memory places this word in the memory buffer register before time
T,, so at time T, we transfer the OP-code part of the instruction word into the OP-
code register. These two facts tell us that we should logically AND the output line
T, from the timing-signal distributor with the 1 output of the I flip-flop and then
connect the Ty / signal to the set input of the READ flip-flop. Next we should
connect a 7'/ signal to the control line that transfers the first 5 bits of the memory
buffer register into the OP register. This is shown in Fig. 9.6.

What happens next is always dependent on the OP-code register. We now
connect a decoder with 2° = 32 outputs to that register (assuming that we will use
all the combinations by adding more instructions). We then have a set of signal
lines, so that line 00000 = ADD will carry a 1 signal when we are adding (since
the operation code for ADD is 00000); 00001 = SUB will carry a 1 if and only
if we are subtracting, since the OP code for subtract is 00001; and 00010 = CLA
will be a 1 only when we clear and add. We combine these lines and the timing-
signal distributor lines and the I and E flip-flop lines to give us all the control
signals needed to run the computer. Figure 9.6 shows the complete control circuitry
required. A comparison of this figure with the timing and control signal chart in
Table 9.2 will show how the control circuitry works and signals are manufactured
when they are needed.

. More instructions can be added by adding to the timing and control signal
chart and by adding the required gates to the control circuitry. Analyzing the
computer in this way, we can readily see how the control circuitry directs the
operations performed in the machine, alternating the acquisition of instructions
from the memory and the performance of the instructions.

TYPICAL SEQUENCE OF OPERATIONS

9.5 It is instructive to analyze the control circuitry in Fig. 9.6 during both an °
ADD instruction and a STORE instruction. Each instruction is started with the /
(instruction cycle) flip-flop on and with the timing-signal distributor having an
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output on line T,;. The AND gate at the upper right of the figure will therefore be
turned on by 7 and T, thus setting the READ flip-flop to the 1 state and initiating
a READ from the memory. At this time, the memory address register is assumed
to have the address of the instruction that will be read into the memory buffer
register.

By time 7, the word read from the memory will have been read into the
memory buffer register, so that when we have the control state / and T, the contents
of the memory buffer register which constitute the OP-code section of the instruc-
tion will be transferred into the OP-code register, and the computer will be in a
position to decode the OP code and determine what instruction is to be performed.

At time / and T, the instruction counter is incremented by 1, so that the
instruction counter now contains the address of the next instruction to be read from
the memory. The AND gate connected to the / and T, input signals is used in turn
on the INCREMENT IC control signal, and its output is designated by the name
of the control signal.

Similarly. at time / and T the memory buffer register is transferred into the
memory address register by the MB INTO MA signal, thus transferring the address
part of the instruction word into the memory address register. The next word read
from or written into the memory will then be at the address designated by the
address part of the instruction word which was just read from the memory.

At the same time, the instruction cycle flip-flop is cleared by the RESET I
signal, and the execution cycle flip-flop is set on by the SET E signal, thus changing
the state of the computer from an instruction cycle to an execution cycle.

At time E and T, then, during an ADD instruction, we set the R flip-flop
on, thus telling the memory to read the word at the address currently in the memory
address register. In this case. this address is the address part of the instruction word
that is being executed. Then at time E and T, we transfer the contents of the
memory buffer register into the B register. The memory buffer register at that time
contains the word which has been read from the memory, so that we now have the
word which has been addressed by the instruction word in the B register for the
addition. At the same time we reset the READ flip-flop.

Notice that the RESET R and RESET W lines are used to reset both the
READ and the WRITE flip-flops simultaneously. There is no harm in resetting
both flip-flops, since only one will be on at any given time.

If the instruction is an ADD instruction at time £ and 7,, we add the contents
of the B register to the contents of the accumulator. The B register contains the
word which has been read from the memory, and the accumulator has not been
changed; so their sum will be transferred into the accumulator. Thus the sum of
the word read from the memory and the previous contents of the accumulator will
be placed in the accumulator. Then, at time E and T;. we transfer the instruction
counter into the memory address register (thus giving the address of the next
instruction to be performed to the memory), at the same time clearing the EXE-
CUTE flip-flop, setting the instruction cycle flip-flop on, and changing the computer
from an execution cycle to an instruction cycle.

Since the / flip-flop is on and it is time T, the SET R control line will go
high, thus telling the memory to read a word. The next instruction word will he
read from the memory and can then be interpreted.

Let us now examine the operation of the STORE instruction. When the
instruction flip-fiop is on and we are in an instruction cycle, the R flip-flop will be



set on when time 7, arrives, telling the memory to|read just as for an addition,
subtraction, or clear and add. Since at time / and fl the memory buffer register
flip-flops contain the OP code of the instruction these will be transferred into the
OP-code register.

At time / and T, we increment the instruction counter so that the address of
the next instruction in memory now lies in the instruction counter; and at time /
and T, we reset the instruction flip-flop and turn on the execution cycle flip-flop,
thus putting the computer in an execution cycle.

At time E and T, if the instruction is a STORE instruction, we set the WRITE
flip-flop on, thus initiating a WRITE into the memory. We also transfer the contents
of the accumulator into the memory buffer register, so that the word written into
the memory will be the current contents of the accumulator register, and so that
after the WRITE cycle has been terminated, the accumulator will have been written
into the memory at the address that was given by the instruction word.

At time E and T, we reset the WRITE flip-flop, since we have already told
the memory to write, nothing need be done at E and T,, for we are now writing
the word into the memory. At time E and T the instruction counter is transferred
into the memory address register by the IC INTO MA control signal, thus giving
the address of the next instruction to the memory. The instruction cycle flip-flop
is turned on and the execution cycle flip-flop turned off, thus turning the computer
to the instruction cycle state. The machine will now execute an instruction cycle
by reading the next instruction word from the memory, interpreting it, and contin-
uing the program.

The preceding example demonstrates how it is possible to design a computer
that will execute a given sequence of operations and thereby cause it to perform
each instruction word that is read from the memory. Although only four instructions
are demonstrated in this particular example, more instructions can be added in
exactly the same manner by simply writing what must be done when an instruction
word is read from the memory, listing the operations that must be performed, and
providing gates which will generate the control signals necessary to the performance
of each instruction. Subsequent sections discuss shifting instructions and branching
instructions. All these may be incorporated into the computer shown by simply
adding gates to the control circuitry and providing for the additional gates necessary
for the transfers and operations between registers.

The general form of the control signal generating scheme is shown in Fig.
9.7. It shows a timing-pulse distributor with eight different time divisions, in which
case each time period is one-eighth of the memory cycle time.

BRANCH, SKIP, OR JUMP INSTRUCTIONS

9.8 The BRANCH, SKIP, or JUMP instruction varies from the normal instruc-
tion in several ways.5 For single-address machines only one word, the instruction
word, must be located in memory. Also, the contents of the instruction counter
may be modified instead of being simply increased by 1. There are two types of

SA survey indicates that some manufacturers call these instructions BRANCH instructions, others call
them TRANSFER instructions, and still others call them SKIP or JUMP instructions. All are the same
thing.

BRANCH, SKIP,
OR JUMP
INSTRUCTIONS
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FIGURE 9.7

General configuration
of control circuitry.

-
Control
signals

BRANCH instructions: conditional and unconditional. For an unconditional BRANCH
instruction, the contents of the address portion of the memory buffer register are
always transferred into the instruction counter. The next instruction performed will
be the instruction at the location indicated by the address section of the instruction
word. In a conditional branch instruction the branch may or may not occur de-
pending on some condition. For example, in single-address computers the condi-
tional BRANCH-ON-MINUS instruction will cause the machine to branch only if
the number stored in the accumulator register of the arithmetic element is negative.
If the number in the accumulator is positive, the contents of the instruction counter
will simply be increased by 1, and the next instruction will be taken in the normal
order.

As can be seen, during a conditional BRANCH-ON-MINUS instruction, the
sign bit of the accumulator of the arithmetic ¢lement must be examined by control
circuitry. If the sign bit is a 1, the number stored is negative, and so the number
in the address part of the instruction word is transferred into the instruction courter.
If the sign bit is a 0, a 1 is added to the instruction counter, and the computer
proceeds.$

To demonstrate how a typical BRANCH-ON-MINUS (BRM) instruction op-
erates in a single-address computer, we modify the control circuitry shown in Fig.
9.6 so that the small machine will include a BRM instruction. Let us give the OP
code 00100 to BRM, so that the line beneath the 00011 = STO line will be high
from the decoder attached to the OP-code register in Fig. 9.6 when a BRM instruc-
tion is in the register.

“Many computers have a set of status bits (flip-flops) which are set and reset depending on the results
of operations performed. Jumps or transfers are then taken based on these flip-flops. The Questions and
Chap. 10 cover this in detail.
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The first two time periods of the instruction cycle are the same for all in-
structions. First the memory is told to read, and then the instruction word is read
from memory into the memory buffer register. The OP-code part is transferred into
the OP-code register, so that, after time 7, and the beginning of time 7,, the line
00100 = BRM will be high and all the other output lines from the decoder will
be low. Now let us make a small table for a BRM instruction, showing what must
be done to carry out this instruction. Table 9.3 shows the steps that must be taken.

If at time T, during the instruction cycle a BRM instruction OP code is in
the OP-code register, one of two things must happen. Either we wish to increment
the instruction counter and give this number as the address of the next instruction
to be taken from the memory, or we wish to transfer the contents of the address
portion of the instruction word into the instruction counter. Which choice we make
depends on the sign bit of the accumulator, called AC,. If the accumulator contains
a negative number, it will have a 1 in AC,; and if it contains a _positive number,
it will have a 0 in flip-flop AC,. Therefore, if / AND 7, AND AC,, we want to
increment the instruction counter. If / AND T, AND AC, happens to be the case,
we wish to transfer the memory buffer register into the instruction counter. This
is shown in the table. During time T’ of this instruction cycle we want to transfer
the instruction counter into the memory address register. We do not need to put
the machine in an execution cycle, but can simply continue to another instruction
cycle, taking the word at the address which has been transferred into the memory
address register as the next instruction. Therefore, we do not clear the instruction
cycle flip-flop or put a 1 in the execution cycle flip-flop; we simply transfer the
instruction counter into the memory address register.

The control circuitry which will implement these operations is shown in Fig.
9.8. This means that the two particular AND gates in Fig. 9.6, which are connected
to the /, T, and /, T; inputs, will be replaced with the two circuits shown in Fig.
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FIGURE 9.5

BRM

Modification of con-
trol circuitry for
BRANCH instruction.

9.8. Notice that this logical circuitry, plus the circuitry in Fig. 9.6, is all that is
needed to generate the control signals required for the BRM instruction.

Notice that the BRM instruction requires only one access to memory and
thus only one instruction cycle for its execution.

SHIFT INSTRUCTIONS

9.7 The instructions we have examined to date were always performed within a
basic fixed number of memory cycles. That is, the ADD, SUBTRACT, CLEAR
AND ADD, and STORE instructions were performed within exactly two memory
cycles, and the TRANSFER and BRANCH instructions required only one memory
cycle. Several types of instructions may require more time than two memory cycles.
Typical of these are multiplication and division, which generally require more time
than two memory cycles. Similarly, an instruction such as SHIFT RIGHT or SHIFT
LEFT could conceivably be performed in a single memory cycle, since the operand
is in the accumulator when the instruction'word is obtained. However, if the
instruction calls for a large number of shifts, more than one memory cycle may be
needed. In this case we could not initiate another memory cycle until we had
finished shifting the requisite number of times. Similarly, for multiplication and
division we could not initiate another memory cycle until we had finished our
multiplication and division process.




To implement these types of instructions, we turn over our control of the
computer to a simple control element which is dominated'by a counter. This counter
will sequence and count the number of steps that must be performed until the
instruction has been completed, and then it will put the computer in an instruction
cycle and tell the memory to read the next instruction word. We illustrate with a
shift right instruction.

The SHIFT RIGHT instruction word consists of two parts: an OP code and
an address part. The OP code of 00101 tells the machine to shift the word in the
accumulator to the right the number of times given in the address part. So if we
write 00101 for the OP code in an instruction word and then write 8 in binary form
in the address part, the computer has been instructed to shift the binary number in
the accumulator to the right 8 binary digits.

Assuming that we have an accumulator with gates so that we can shift the
accumulator digits to the right, as explained in Chap. 5, all we need is to apply
eight consecutive SHIFT RIGHT control signals to the accumulator and we will
have shifted the number to the right eight places. Since there are only four pulses
per memory cycle, we will not want to use the memory until we have completed
our shifting. If, for instance, the instruction said SHIFT RIGHT 1, we could finish
in one pulse time and start the next instruction cycle immediately after. But if the
instruction word said SHIFT RIGHT 4, 5, or 15 or more times, we would have to
wait until we had completed shifting before we could initiate another instruction
cycle and fetch the next instruction word from the memory.

To do this, we first prepare the computer for the shifting operation by incre-
menting the instruction counter so that the next word obtained will contain the
address of the next instruction word. To count the number of shifts that we perform,
we add another register, called a step-counter register, which counts downward
from a given number to 0. We then transfer the address part of the memory buffer
register into the step counter, so the step counter contains the number of shifts to
be performed. Then each time we shift, we decrement the counter by I, so when
the counter reaches 0, we will have performed the requisite number of shifts.

Figure 9.9 shows two stages of a decrementing counter and the gates nec-
essary to transfer the memory buffer register contents into the step counter, des-
ignated SC. The two rightmost, or least significant, digits of the counter are shown
(SC, and SCy), as are the two rightmost digits of the memory buffer register (MB,
and MB,).

The actual number of stages in the step counter is determined by the maxi-
mum number of shifts which the machine must ever make and, since we will also
use the same counter for multiplication and division, by the maximum number of
steps that will ever be required to multiply or divide. For a computer containing
21 binary digits in the basic computer word, the counter might well contain five
flip-flops. For a computer with a basic computer word of perhaps 35 or 36 binary
digits, the step counter might well contain six or even seven flip-flops:

Consider a sequence of operations for a SHIFT instruction. Times / AND T
and I AND T, are as usual. At/ AND T, we increment the instruction counter and
transfer the count into the step counter. At / AND T3, we set a flip-flop called SR
(shift right) on, which tells the computer to start shifting. At the same time we
clear the / flip-flop, so that the machine is in neither an instruction nor an execution
cycle, although it is actually executing an instruction. Thus we do not initiate

SHIFT
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subsequent memory cycles, and the machine effectively freezes in the shifting state
until the step counter has counted to 0, indicating that the requisite number of
shifts has been performed. (Actually the step counter counts only to binary 1 rather
than to 0 before the order to stop counting is given, for counting when the counter
is at 0 would introduce an extra shift.) If we turn off the counter SR flip-flop when
the output of the counter is at the 00 . . . 001 signal, and if at the same time we
turn on the / or instruction cycle, the computer will proceed to the next instruction
cycle, fetching the next instruction word from the memory and performing it. Table
9.4 shows this.

When the SR flip-flop is on, it will be necessary to stop the timing-signal
distributor. Thus we arrange to disable this circuit, using the SR flip-flop’s output
for this purpose.

Implementation of the above procedure is straightforward. A three-input AND
gate with inputs /, T,, and 00101 = SHR (the output from the decoder in Fig.
9.6) can be used to turn on an SR flip-flop, the STOP output from the step counter

to turn it off, also turning on /. The input to the clock can be turned off when SR
is on.



TABLE 9.4 443

CONTROL SIGNAL
SHIFT RIGHT TURNED ON COMMENTS
land T, SETR Tells memory to read. ,
Jand T, MBINTOOP, ~  OP code of instruction word is transferred
RESETR into OP-code register. READ flip-flop-is turned
off. . . '
land T, INCREMENT IC, The instruction counter is prepared to obtain
MB INTO SC the next instruction word. The address part
of the instruction word is transferred into the REGISTER TRANSFER
step counter. LANGUAGE
fand T; RESET |, SET SR The instruction cycle flip-flop is turned off.
The SHIFT RIGHT flip-flop is turned on.

REGISTER TRANSFER LANGUAGE

9.8 The preceding design showed how to generate a sequence of control signals
which would cause instruction words read from a memory to be executed. The
control signals were named so that the function of each was indicated. For example,
the control signal INCREMENT IC causes the IC (instruction counter) to be in-
cremented; RESET W causes W to be reset; MB INTO BR causes the contents of
MB to be transferred into the BR register, etc.

To document a design, it is convenient to have a notational technique for
representing these operations on and between registers. The most used way to
organize and write register operations is called register transfer language, and was
invented by 1. S. Reed.” Currently, manufacturers’ design efforts and their manuals
documenting computer designs all use some version of register transfer language.

An example of a transfer between registers in register transfer language is

py ol
I“j:;-:'!r.‘lv.l.- e

575 U0t

A—B

This says, ‘‘Transfer the contents of register A into register B.”’ A control signal
to effect this might be conveniently called A INTO B.
Another example of register transfer language is

0—D

This says, ‘‘Set D to a 0.”” If D is a flip-flop, this simply means to reset D, and
an appropriate control signal name might be RESET D.

"The book Theory and Design of Digital Machines by T. C. Bartee, 1. L. Lebow, and I. S. Reed,
McGraw Hill, New York, first presented this design technique in detail.



THE CONTROL UNIT

Here is another example:
A+B—-oA

This says, ‘‘Add the numbers in A and B and place the sum in A.”’ A control
signal for this might well be called ADD or ADD AB.
The above operations on and between registers are sometimes called micro-
operations, particularly if the computer is microprogrammed, as will be discussed.
An interesting statement in register transfer language is

A+1—>A

This says, ‘“‘Add I to A and place the sum in A.”’ A name for the corresponding
control signal mightbe INCREMENT A.

In some cases, register transfers or operations affect only parts of registers.
An example was shown in preceding sections where the first 5 bits in the memory
buffer register MBR were transferred into the OP register. Subscripts are generally
used to indicate specific bits, and an example transfer can be written

Bos— Py y
This assumes that the B register flip-flops have been named By, B,, . . . , By; and
this means B, B,, B,, B;, and B, will be transferred into P,, P,, P,, P;, and P,,

respectively.
A specific bit in a register also can be transferred. Consider

A;= B,

This transfers A, of register A into B, of register B.
Sometimes operations and transfers are dependent on certain conditions. This
is indicated as follows:

R=0:A—-B

This statement means, ‘‘If R has value O, transfer A into B.”’ Here is another
example:

RT,:IC + 1> IC

This statement says, "‘If Ris a 1 and T, is a I, then increment the IC register.”’
The colon is used to indicate a conditional operation.

Here is the CLEAR AND ADD instruction in Table 9.2 rewritten in register
transfer language. We will use the CLEAR AND ADD control signal CLA from
the decoder in Fig. 9.6.



I'Ty: 1= R
I'T, : MB,g_,; = OPy,
0—R
CLAI'T,:IC + 1> 1IC
CLA'I'T; : MBg ;s = MA, g,
0—-1,1—-E
CLAET,:1—R
CLA-E-T, : MB — BR,
0— AC,0—>R
CLAET,: A+ B—> A
CLA'E'T;: IC—> MA
1-1,0—-E

The above assumes 24 bits in the A and MB registers and 19 bits in the memory
address register. So MBy_ ;5 is the address part of an instruction word and gets
transferred into MA,_ 5.

Also notice that the entire circuitry for generating the gates for control signals
can be read directly from the table. The final statement,® for example, says this:
“If you AND CLA, E, and T;, then the output from the AND gate can be used
to initiate the transfer IC — MA and | — I and 0 — E.”’ This means the output
from the AND gate can be connected to' (perhaps being ORed with other signals)
the control signals IC INTO MA, SET I, and RESET E.

Many register transfer languages have been designed and used by different
individuals and companies. One frequent variation is in making transfers move
from right to left (which is more like programming practice). In this variation, we
find

B«—A
instead of

B— A
Sometimes equals signs are used. Then

B=A
says to transfer A into B. Occasionally we see

B:=A

This also says to transfer A into B in some variations.

8Notice the control signal CLA from the decoder in Fig. 9.6 can be used after time T, because-the oP
code is in OP after that time.

REGISTER TRANSFER
LANGUAGE
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It is generally not hard to read one of the register transfer languages once a
basic one has been understood.

The wide success and usage of register transfer languages to describe the
internal operations of a computer is primarily due to the facility with which a
design can be organized and the direct way a design can be translated from register
transfer language into the control gating structure once the control signals have
been named. Register transfer language is also widely used in giving the details of
instruction repertoires, as we will see in Chap. 10.

MICROPROGRAMMING

*9.9 In the preceding sections, the control signals which sequence the operations
that are performed to execute computer instructions were generated by using gates.
There is another method, called microprogramming, which is also used to generate
the control signals in an orderly fashion. This method generally involves use of a
ROM to effectively store the control signals in a manner that will be described.

When a computer is microprogrammed, the individual operations between
and on registers are called microoperations. For instance, transferring the program
counter’s contents into the memory address register is a microoperation. Similarly,
incrementing the program counter is a microoperation, as is transferring the ac-
cumulator’s contents into the memory buffer register.® In each case a microoper-
ation is initiated by raising a single control signal and sequencing microoperations
involves sequencing the appropriate control signals.

Figuring out a sequence of microoperations to do something is called micro-
programming. The microprogrammer generally writes the list of operations, or
microprogram, using a special language. Quite often a computer program is used
to translate this microprogram into a listing describing the appropriate contents for
a ROM, which will be used to store the microprogram. The statements that the
microprogrammer writes are in a microprogramming language. This language can
be very primitive or very complex.

To explain microprogramming, we use the computer layout and instructions
given in the previous sections and redo the design, using a ROM to store the
control signals. Therefore, the registers and control signals in Fig. 9.3 are used in
the design. First we note that the basic list of microoperations needed is shown in
Table 9.5. Each microoperation is described by using a symbolic notation (in effect,
a microprogramming or register transfer language), and the corresponding control
signal which will cause this operation to occur is also shown.

For instance, the microoperation MB — BR, which says to transfer the
contents of the memory buffer register (MB) into the B register (BR), is made to
occur by raising the control signal MB INTO BR. Notice the considerable similarity
between the description in the microprogramming language and the control signal’s
name. This is a convenient practice, although the control signals could be named
Xi, A,, or anything desired. A 16-bit instruction word is assumed.

Microoperations are just the same as register operations. The term microoperations is used in this area
along with microprogramming for historical reasons. Microoperations and register transfers and oper-
ations are physically realized using the same control signals and associated gating structures.



TABLE 9.5 MICROOPERATIONS

BIT IN READ-ONLY
MICROOPERATION CONTROL SIGNAL NAME CONTROL MEMORY

MICROPROGRAMMING

Figure 9.10 shows a block diagram for the control system as it will be
implemented. There is 8 ROM with 64 locations and 30 bits per address and an
address register for this memory called JAR (microinstruction address register).
Each output bit from the ROM is a control signal which will generate a microop-
eration, and these control signals are named C, to C,s. Seven of these outputs are
special because they are next addresses which can be loaded into the IAR and
which will be used to sequence the IAR in several cases. (This ROM is often called
a control memory.)

FIGURE 9.10

Block diagram for
control system.
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The following operations can be performed on this control unit. A 1 can be
added to the IAR (in microprogramming language, IAR + 1 — IAR, the conuol
signal is called INCREMENT IAR), and the output bits from the control memory
labeled C,, to Cg can be transferred into the IAR. It is also possible to add the value
in OP (see Fig. 9.3) plus 1 to the current contents of the JAR.

Now the basic scheme is this: The control signals to generate a given com-
puter instruction, say ADD, are stored in a section of the control memory. The
IAR sequences through this section, and at each location the outputs from the
control memory will comprise the control signals. These ROM outputs then replace
the control signals generated by the gates in Fig. 9.6.

The first problem is that the IAR must be set to the correct address at the
beginning of that section in control memory which contains the bits storing the
control signals for the instruction to be executed. To do this, we must examine
the OP-code register’s contents after we have reaa the instruction word from memory
and then moved the OP-code section from the memory buffer register into the OP-
code register. The complete microprogram for the control memory is shown in
Table 9.6. Notice that the first microoperations performed are as follows:

LOCATION IN
CONTROL MEMORY MICROPROGRAM
0 1-R IAR + 1 — IAR
1 MB15_11 - OP IAR + 1> |AR
2 OP + IAR + 1— IAR
3 Co-¢— IAR
4 Co_¢ — IAR
g Co_¢ — IAR
Co_a - 'AR

The operation here is as follows. First the memory is told to read. (The prior
instruction has loaded the memory address register with the location of the instruc-
tion word.) The instruction word is then in the memory buffer register when the
next microoperation is performed. This microinstruction loads the OP-code register
with the first 5 bits in the memory buffer register. Next this value is added to the
IAR register plus 1. Now if the instruction is an ADD instruction with OP code
00000, then 1 will be added to the current IAR’s contents (which will give 3
decimal). Thus the next word in the control memory to be accessed will be at
location 3, and in location 3 the value for C in the first 7 bits is 20. When C is
loaded into the IAR, the next microinstruction word addressed will be that at
address 20 in the ROM, which contains the first microinstruction in the ADD
section. If the instruction in OP was a SUBTRACT, the OP code will be 00001,
and so the next word in the control memory to be used will be at location 4 decimal,
which will cause a transfer to location 25, which in turn contains the microinstruc-
tions for the SUBTRACT instruction.

Therefore, an ADD instruction will cause a jump to location 20 (decimal) in
the control memory, and a SUBTRACT will cause a branch to location 25. In each
case these locations begin the section of memory containing the microinstructions
which will cause the instruction to be executed.

At the end of each microprogram section which causes an instruction to be
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LOCATION IN
CONTROL
MEMORY MICROPROGRAM COMMENTS
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executed, the IAR is set to 0, which is the starting point for the operations that
lead to reading in the next instruction and branching to the correct section in the
control memory to cause the instruction to be executed.

VARIATIONS IN MICROPROGRAMMING CONFIGURATIONS

9.10 Figure 9.11 shows the microprogram of Table 9.6 stored in a memory.
The implementation here has the control memory in Fig. 9.10 with its contents,
as shown in Fig. 9.11. This basic configuration is used in most modern micropro-
grammed conputers. There are many variations on this idea, however, and there
are many microprogramming languages. The references contain further descriptions
and information in this area.

The microprogramming configuration shown in Fig. 9.11 has an output bit
from the memory for each control signal. This is called horizontal microprogram-
ming. For larger computers there may be many control signals, and thus there
would be many bits in the control memory. (In general, the number of control
signals varies from about 60 for small computers to about 3000 for the largest
machines.) Since this would involve too large a control memory, the control signals
are examined, and an attempt is made to reduce the number of outputs from the

Microprogram in
memory. Control ad-
dress C, has 0s in all
positions.

CONTROL
ADDRESS ADDRESS
IN 4 N

MEMORY |C,C;3C3C,C5CCyCgCoCroCr1CryCr3CrsCisCrgCrrC1qCrgCa0C1 Ca2 C2aC24 Cas Cg

Note: Only 1s are shown; remaining positions are Os.



